Diverse Representations of Olfactory Information in Centrifugal Feedback Projections.
نویسندگان
چکیده
UNLABELLED Although feedback or centrifugal projections from higher processing centers of the brain to peripheral regions have long been known to play essential functional roles, the anatomical organization of these connections remains largely unknown. Using a virus-based retrograde labeling strategy and 3D whole-brain reconstruction methods, we mapped the spatial organization of centrifugal projections from two olfactory cortical areas, the anterior olfactory nucleus (AON) and the piriform cortex, to the granule cell layer of the main olfactory bulb in the mouse. Both regions are major recipients of information from the bulb and are the largest sources of feedback to the bulb, collectively constituting circuits essential for olfactory coding and olfactory behavior. We found that, although ipsilateral inputs from the AON were uniformly distributed, feedback from the contralateral AON had a strong ventral bias. In addition, we observed that centrifugally projecting neurons were spatially clustered in the piriform cortex, in contrast to the distributed feedforward axonal inputs that these cells receive from the principal neurons of the bulb. Therefore, information carried from the bulb to higher processing structures by anatomically stereotypic projections is likely relayed back to the bulb by organizationally distinct feedback projections that may reflect different coding strategies and therefore different functional roles. SIGNIFICANCE STATEMENT Principles of anatomical organization, sometimes instantiated as "maps" in the mammalian brain, have provided key insights into the structure and function of circuits in sensory systems. Generally, these characterizations focus on projections from early sensory processing areas to higher processing structures despite considerable evidence that feedback or centrifugal projections often constitute major conduits of information flow. Our results identify structure in the organization of centrifugal feedback projections to the olfactory bulb that is fundamentally different from the organization of feedforward circuits. Our study suggests that understanding computations performed in the olfactory bulb, and more generally in the olfactory system, requires understanding interactions between feedforward and feedback "maps" both structurally and functionally.
منابع مشابه
Role of centrifugal projections to the olfactory bulb in olfactory processing.
While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the olfactory bulb while decreasing feedback inputs t...
متن کاملFunctional imaging of cortical feedback projections to the olfactory bulb
Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal inp...
متن کاملBinaral interaction and centrifugal input enhances spatial contrast in olfactory bulb activation.
We used paired-pulse odorant stimulation, with a conditioning stimulus delivered either ipsilateral or contralateral to a test stimulus, to unmask the effects of centrifugal feedback on olfactory bulb responses. In reptiles and mammals there are no direct connections between the paired olfactory bulbs, and thus all information transfer between the olfactory bulbs depends on feedback from retrob...
متن کاملCortical Feedback Decorrelates Olfactory Bulb Output in Awake Mice
The olfactory bulb receives rich glutamatergic projections from the piriform cortex. However, the dynamics and importance of these feedback signals remain unknown. Here, we use multiphoton calcium imaging to monitor cortical feedback in the olfactory bulb of awake mice and further probe its impact on the bulb output. Responses of feedback boutons were sparse, odor specific, and often outlasted ...
متن کاملCortical Feedback Control of Olfactory Bulb Circuits
Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 28 شماره
صفحات -
تاریخ انتشار 2016